Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
biorxiv; 2024.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2024.01.22.576742

Résumé

We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (KD < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC50 ~0.1-1.75 nM) and provided robust protection in vivo. Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization.


Sujets)
COVID-19 , Douleur paroxystique
2.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.12.12.571160

Résumé

Continuous evolution of SARS-CoV-2 alters the antigenicity of the immunodominant spike (S) receptor-binding domain and N-terminal domain, undermining the efficacy of vaccines and monoclonal antibody therapies. To overcome this challenge, we set out to develop a vaccine focusing antibody responses on the highly conserved but metastable S2 subunit, which folds as a spring-loaded fusion machinery. Here, we describe a protein design strategy enabling prefusion-stabilization of the SARS-CoV-2 S2 subunit and high yield recombinant expression of trimers with native structure and antigenicity. We demonstrate that our design strategy is broadly generalizable to all sarbecoviruses, as exemplified with the SARS-CoV-1 (clade 1a) and PRD-0038 (clade 3) S2 fusion machineries. Immunization of mice with a prefusion-stabilized SARS-CoV-2 S2 trimer vaccine elicits broadly reactive sarbecovirus antibody responses and neutralizing antibody titers of comparable magnitude against Wuhan-Hu-1 and the immune evasive XBB.1.5 variant. Vaccinated mice were protected from weight loss and disease upon challenge with SARS-CoV-2 XBB.1.5, providing proof-of-principle for fusion machinery sarbecovirus vaccines motivating future development.


Sujets)
Perte de poids
3.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.07.25.550460

Résumé

Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of this non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb infusion did not suppress infectious viral titers in the lung as potently as NTD neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Finally, Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection in SARS-CoV-2 infection. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.


Sujets)
Infections à coronavirus , Maladies pulmonaires , COVID-19
4.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.05.22.540829

Résumé

The emergence of three distinct highly pathogenic human coronaviruses, SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019, underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines are highly protective against severe COVID-19 disease, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor binding domains (RBDs), which elicited live-virus neutralizing antibody responses and broad protection. Specifically, a monovalent SARS-CoV-2 RBD scNP vaccine only protected against sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both merbecovirus and sarbecovirus challenge in highly pathogenic and lethal mouse models. Moreover, the trivalent RBD scNP elicited serum neutralizing antibodies against SARS-CoV, MERS-CoV and SARS-CoV-2 BA.1 live viruses. Our findings show that a trivalent RBD nanoparticle vaccine displaying merbecovirus and sarbecovirus immunogens elicits immunity that broadly protects mice against disease. This study demonstrates proof-of-concept for a single pan-betacoronavirus vaccine to protect against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
5.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.04.03.23287498

Résumé

Individuals with weaker neutralizing responses show reduced protection with SARS-CoV-2 variants. Booster vaccines are recommended for vaccinated individuals, but the uptake is low. We present the feasibility of utilizing point-of-care tests (POCT) to support evidence-based decision-making around COVID-19 booster vaccinations. Using infectious virus neutralization, ACE2 blocking, spike binding, and TCR sequencing assays, we investigated the dynamics of changes in the breadth and depth of blood and salivary antibodies as well as T-cell clonal response following mRNA vaccination in a cohort of healthcare providers. We evaluated the accuracy of two POCTs utilizing either blood or saliva to identify those in whom humoral immunity was inadequate. >4 months after two doses of mRNA vaccine, SARS-CoV-2 binding and neutralizing Abs (nAbs) and T-cell clones declined 40-80%, and 2/3rd lacked Omicron nAbs. After the third mRNA booster, binding and neutralizing Abs increased overall in the systemic compartment; notably, individuals with previously weak nAbs gained sharply. The third dose failed to stimulate secretory IgA, but salivary IgG closely tracked systemic IgG levels. Vaccine boosting increased Ab breadth against a divergent bat sarbecovirus, SHC014, although the TCR-beta sequence breadth was unchanged. Post 3rd booster dose, Ab avidity increased for the Wuhan and Delta strains, while avidity against Omicron and SHC014 increased to levels seen for Wuhan after the second dose. Negative results on POCTs strongly correlated with a lack of functional humoral immunity. The third booster dose helps vaccinees gain depth and breadth of systemic Abs against evolving SARS-CoV-2 and related viruses. Our findings show that POCTs are useful and easy-to-access tools to inform inadequate humoral immunity accurately. POCTs designed to match the circulating variants can help individuals with booster vaccine decisions and could serve as a population-level screening platform to preserve herd immunity.


Sujets)
COVID-19
6.
biorxiv; 2023.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2023.01.19.524784

Résumé

The rapid emergence of SARS-CoV-2 variants that evade immunity to vaccination has placed a global health imperative on the development of therapeutic countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent pan-sarbecovirus antibodies from non-human primates vaccinated with an AS03 adjuvanted subunit vaccine against SARS-CoV-2 that recognize conserved epitopes in the receptor binding domain (RBD) with femtomolar affinities. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells for at least one year following primary vaccination. 514 monoclonal antibodies (mAbs) were generated from antigen-specific memory B cells. Antibodies isolated at 5 to 12 months following vaccination displayed greater potency and breadth, relative to those identified at 1.4 months. Notably, 15 out of 338 (~4.4%) antibodies isolated at 1.4~6 months after the primary vaccination showed extraordinary neutralization potency against SARS-CoV-2 omicron BA.1, despite the absence of BA.1 neutralization in serum. Two of them, 25F9 and 20A7, neutralized authentic clade Ia sarbecoviruses (SARS-CoV, WIV-1, SHC014) and clade Ib sarbecoviruses (SARS-CoV-2 D614G, SARS-CoV-2 BA.1, Pangolin-GD) with half-maximal inhibition concentrations of (0.85 ng/ml, 3 ng/ml, 6 ng/ml, 6 ng/ml, 42 ng/ml, 6 ng/ml) and (13 ng/ml, 2 ng/ml, 18 ng/ml, 9 ng/ml, 6 ng/ml, 345 ng/ml), respectively. Furthermore, 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants of concern and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1 and XBB variants. X-ray crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved RBD sites. In vivo prophylactic protection of 25F9, 20A7 and 27A12 was confirmed in aged Balb/c mice. Notably, administration of 25F9 provided complete protection against SARS-CoV-2, SARS-CoV-2 BA.1, SARS-CoV, and SHC014 challenge, underscoring that these mAbs are promising pan-sarbecovirus therapeutic antibodies.


Sujets)
Syndrome respiratoire aigu sévère
SÉLECTION CITATIONS
Détails de la recherche